Migration to IPv6 using DNS64/NAT64

Stephan Lagerholm

Agenda / About me

- DNS Architect at Secure64 Software Corp.
- Director and founder of the TXv6TF
- Personal blog at IPv4depletion.com

1

IPv4 depletion

Global IANA pool depleted in Feb-2011

Secure64

Supporting IPv6 in DNS

Transition Mechanisms

x2 load on DNS

getaddrinfo()

 $A \longrightarrow AAAA$

IPv6 and DNS

- Some common misunderstandings and pitfalls about v6 and DNS:
- The network protocol (v4 or v6) is not linked to the record type (A or AAAA) that can be looked up.
- The network protocol (v4 or v6) used between the client and the recursive DNS is not related to the network protocol used between the recursive DNS and the authoritative DNS.
- If there is an outgoing v6 interface, then the DNS system will start to use it.

Secure 64 IPv6 features

- Basic features:
 - IPv6 interfaces (autoconfig and statically configured)
 - Syslog, Ping6, NTP, dig, SNMP
 - Routing protocols with IPv6 support
 - Denial of Service protection over IPv6
- Advanced features:
 - DNS64
 - Disable AAAA on IPv4 transport (the Yahoo! hack)

NAT64 / DNS64 Solution

RFC 6146/6147

NAT64 / DNS64 Under The Hood

Secure 64 DNS configuration


```
[view@Secure64]#> enable sysadmin
[sysadmin@Secure64] #> route default 10.10.5.1
[sysadmin@Secure64]#> route default 2001:DB8:1:5::1
[sysadmin@Secure64]#> route sym
[sysadmin@Secure64] #> ifconfig eth1 10.10.5.2 255.255.255.0
[sysadmin@Secure64] #> ifconfig eth2 2001:DB8:1:5::2/64
[sysadmin@Secure64]#> activate
[sysadmin@Secure64] #> save
[sysadmin@Secure64] #> show config
[view@Secure64]#> enable cachednsadmin
[cachednsadmin@Secure64]# edit cache.conf
  interface: 10.10.5.2
     interface: 2001:DB8:1:5::2
     outgoing-interface: 10.10.5.2
     outgoing-interface: 2001:DB8:1:5::2
     access-control: 0.0.0.0/0 allow
     access-control: ::0/0 allow
  dns64-prefix: 64:ff9b::/96
<CTRL-X to save and exit>
[cachednsadmin@Secure64]# stop cachedns
[cachednsadmin@Secure64]# start cachedns
```

Transition using translators (DNS64)

- Good approach if you don't have enough IPv4 addresses for dual stack.
- IPv6-only network on the client side!
- User experience with NAT64 is (almost) the same as NAT44

- Stuff that's broken doesn't work.
- Only one network to maintain.

DNS64 everybody will need it

Additional DNS64 functionality

- Sticky clients
 - You don't want a client to change from one NAT64 gateway to another during a session
- Mixed deployments using views
 - Any combination of Dual stack, IPv4 only, IPv6 only
- Load balancing via DNS
 - Multiple DNS64 prefixes
- High availability
 - Provision multiple DNS servers to the clients
 - How can we take a NAT64 out of rotation?

HTTP problem in details

Today some content providers are not giving out AAAA unless you are on their white list because it might break 0.078% of IPv4 clients = could be millions of users and millions in revenue

Content providers DNS decides if A or AAAA or both

- There are problems when client IPv6 connection is broken
 - Extreme slowdown as client retries AAAA and then A lookups
- Estimated 0.078% of clients have this problem
 - Some older Opera browsers, some older Apple OSes, etc.
 - Amounts to millions of users for some large content providers like Google, Yahoo, etc.
- This is a HTTP problem, not applicable for other protocols such as DNS and SMTP.

One Proposed Solution Using DNS

- Caching side (ISP, consumer of content)
 - If query came in over IPv4, respond negatively to the AAAA request and wait for the A request
- Side effects:
 - Breaks DNSSEC
 - Turns off IPv6 for clients that can only do DNS queries over IPv4 (ie Windows XP)
- Future feature? Filter A over IPv6

Testing IPv6

- Useful Open Source Tools
 - ISIC6
 - Stack Integrity Checker
 - http://isic.sourceforge.net/
 - Resperf/dnsperf/dig
 - All work over Ipv6
 - Scapy
 - Packet Manipulation
 - http://www.secdev.org/projects/scapy/
 - THC
 - "The Hackers Choice" attack tools.
 - http://thc.org/thc-ipv6/

Questions?